$$C_{\rm f}$$
 = flow coefficient, as determined in paragraph (b)(2)(ii) of this section.
 $A_{\rm t}$ = cross-sectional area at the venturi throat.
 R = molar gas constant.

 $p_{\rm in}$ = static absolute pressure at the venturi inlet.

 $\dot{Q} = C_{\rm d} \cdot C_{\rm f} \cdot \frac{A_{\rm t} \cdot R \cdot p_{\rm in} \cdot T_{\rm std}}{p_{\rm std} \cdot \sqrt{Z \cdot M_{\rm mix} \cdot R \cdot T_{\rm in}}}$

Eq. 1066.625-3

Where:

 $T_{\text{std}} = \text{standard temperature.}$ $p_{\text{std}} = \text{standard pressure.}$

 $C_{\rm d}$ = discharge coefficient, as determined in paragraph (b)(2)(i) of this section.

Z = compressibility factor. $M_{\text{mix}} =$ molar mass of gas mixture.

 $T_{\rm in}$ = absolute temperature at the venturi inlet.

(i) Using the data collected in \S 1066.140, calculate C_d for each flow rate using the following equation:

(2) Perform the following steps to calibrate an SSV flow meter:

$$C_{\rm d} = \dot{Q}_{\rm ref} \cdot \frac{p_{\rm std} \cdot \sqrt{Z \cdot M_{\rm mix} \cdot R \cdot T_{\rm in}}}{C_{\rm f} \cdot A_{\rm t} \cdot R \cdot p_{\rm in} \cdot T_{\rm std}}$$

Eq. 1066.625-4